STAT 9912: Acceleration, Greed and Hedging in Optimization

Taught by Dr. Jason Altschuler
Notes written by Faraz Radhman

Contents

[1 Setting the Stage|
[1.1 Optimization and Gradient Descent|
[1.2 Why =V f7] . o e

2 Quadratics|
2.1 Do we converge?|
2.2 How fast do we converge?|
2.3 Optimal Schedules|
[2.3.1 Warmup: Spectral Annihilation|. 000000
[2.3.2 Optimal 2-Step Schedules| Lo

[2.4 The Chebyshev Polynomials and Accelerated Methods|
[2.4.1 Polyak’s Heavy Balll oo
[2.4.2 Random Stepsizes via Potential Theory|

2.5 Understanding the best case scenarios via a two player game|

3 Nesterov’s Accelertion and Curvaturel

1 Setting the Stage

1.1 Optimization and Gradient Descent

Mathematical optimization tackles the set of problems that can be formulated as
minimize f(x)
xr

subject to x € X

This course aims to study progress in first order optimizers: algorithms that aim to solve the above
problem given an oracle that can compute the following given x

L. f(z)
2. Vf(x)

The canonical algorithm to solve this problem is Gradient Descent (GD) and is described by the
following update
T4l = Tt — Oétvf(fﬂt)

where {o;} parameterizes different ”schedules” for GD.
Here are some questions to start discussion:

Q1) Why move in the direction —V f

Q2) Can GD converge? (with any step sizes)

Q3) How fast? (with optimal step sizes)

1.2 Why —V#?

The gradient descent algorithm, as many other tools in science and engineering, can be derived
from solving a linear approximation to the optimization objective.

Writing the first-order Taylor-expansion at x we get

flx+v)= f(x)+(Vf(@),v)

If we want to use this crude optimization to (try to) move x in a direction that reduces f, we can
setup the following problem.

minivmize f(x) +(Vf(x),v)

subject to |Jv]|3 <1

In English, this asks: “If we were only allowed to move one unit away from & what direction should
we move to decrease f(x) the most?”.

We will find that
v* x —Vf(x)

A comment should be made that the choice of the ¢ norm here is not obvious. Different norms
will induce different update rules creating a general class of algorithms called methods of steepest
descent.

2 Quadratics

The simplest place to start our study is in the optimization of convex quadratic functions.
We can consider any function that can be expressed as

1

QZBTHZB —b'z+ec

f(@)

where H > (ﬂ (necessary for f to be convex) and H is symmetricﬂ

One assumption we will make is that mI < H < MI where m, M > 0 making the f M-smooth
and m-strongly convex.

This problem has a closed-form optimal solution given by
z-=H 'b

which can be derived via the FOC. This equality will be useful for deriving convergence rates for
GD on quadratics.

2.1 Do we converge?

Much can be said about GD by studying the difference to between the current solution and the
optimal solution
xz, —x*

over time. Intuitively we want the distance to go down... and fast!

Plugging in the update rule we can see how
(@11 —2") = (T — ") — uVf(z)

Note that

Vfl®)=Hx;—b
=Hzx, -~ HH 'b
=Hx; — Hx"
=H (x;, —x)

where the third lines comes from the closed form solution x* = H~1b.

'H>0sx"Hx >0, VaxcR™ & H is positive semidefinite (PSD) by defn. < =" Hz is convex.
A 2We can assume H is symmetric without loss of generality because if H is not symmetric, we can replace it with
H = % (H + H T), which yields an equivalent function f

If we plug in this term for V f(z) we get a recurrence

(41 — ") = (g — x¥) — o H (bxy — ™)
= (I — OétH)(CL‘t — m*)

This is a Linear Dynamical System (LDS). Recall that an LDS
zi41 = Az

will converge so long as |\;| < 1 for all eigenvalues \; of A.

Recall that we assumed that mI < H < MI, so our dynamics matrix A; = (I — a;H) we know
that the eigenvalues for this dynamical system sit in

Ai € [1—aM,1—am)]

Hence, if set all steps to an adequately chosen oy = « the above LDS will converge to 0.

2.2 How fast do we converge?

Before we can answer this question we need to define what it means to converge “quickly”. Consider

the metric .
pp ler =l
o — ||
which captures the fraction of the original distance remaining in our optimization. Naturally we
want this as low as possibile. Taking the geometric mean (RT)l/ T can tell us about the average

contraction rate of our error per optimization step.

In our analysis we will focus on worst-case analysis over the functions f, and random inits g, so
if oy = « is constant, then it suffices to consider R;. We will start here

Consider the following minimax problem where we look for the algorithm (parameetrized by con-
stant step-size «) that minimizes the the worst case 1-step contraction rate Ry

: s — 7|
argminmax R; (= ——

Using the LDS update to expand the numerator,

: (I —aH) (xo—)|
argmlnmax
o H,zo lxo — x*||

Some may recognize the inner maximization as the matrix norm of (I —«aH). Since H is symmetric
this is equivalent to the maximum eigenvalueE] So we can express the minimax as

argmin max Amax (I — aH)
” H

3More information on the matrix norm can be found here.

https://math.stackexchange.com/questions/4159983/derivation-of-l2-norm-of-matrix-formula

Since we assumed mI < H < MI what we can further simplify to

argmin max |1 — @)\

There is a nice geometric interpretation to this problem. If we think |1 —)| as a linear function,
we can think of sweeping the slope of an absolute function pinned at (0,1).

|

5 o 05 15

You can play around with this exact plot on Desmos here.

Analytically, since the function is a (peice-wise) linear, we know that the maximum is at either
boundary allowing us to write

argminmax {|1 — am|,|1 — aM|}
[0

With arithmetic we can arrive at 5
*

“ :M+m

If we plug this into R; we get a Convergence Rate:

M —m 1
R = =1-0|(-+
YT M+m <k:>

If we want Iteration Complexity (a.k.a. running time): Recall:

errory, < R} - errorg

Suppose we want to ask how many iterations need to get error, =€

ie.)
R?Seinzklog()
€

Note the fact: 1 —§ =

2.3 Optimal Schedules

In the above section, we derived optimal rates for GD when we can pick a single fixed step-size.
The natural follow-up is to ask if we can do better with non-constant step-sizes.

https://www.desmos.com/calculator/ehnoyh1yen

2.3.1 Warmup: Spectral Annihilatiorﬁ

We spent some time deriving the optimal constant step-size for worst-case qudaratic problems with
a given mininum and maximum eigenvalue. Before continuing, let’s build understanding about
what we can do if we have access to the entire eigen-spectrum of our problem.

In particular, let’s start with the 1d-case with
1
f(z) = §Ax2

The gradient V f(z) = Az, so after one step of gradient descent with step-size a, the next iterate

1S

xT =1 — adx

You'll notice that simply setting a = % yields

+

x :x—zx:O:w*

Allowing us to solve in one iteration. Now consider that we have a 2d problem.
Consider diagonal A € R?*2 and

flx) = 1asTAaz =

5 (Allx% + Agzxg)

N

The gradient V f(x) = Az, so after one step of gradient descent with step-size «, the next iterate
is

xf‘ =z —adzx

$2+ =z — oAy
Like the 1d case, we can simply select the diagonal elements (eigen-values for general matrices) to
be our reciprocal step-sizes to arrive knock the corresponding entry right to the optimum x* = 0.

Let oy = A%N g = A%Q, then after one step we knock out xq

A11
++ +
), =z ——11=0
1 1 All
A22 A22
J};"i_: ;_—H.f_(l—ll T2

4Not included in original lectures.

This logic extends to d-dimensional problems and non-diagonal problems where we arrive at the
optimum in d-steps. An important takeaway here is that the order of step-sizes do not matter.
Because, the eigen-spectrum of a quadratic function is indentical at all points, the step with step-
size reciprocal to the ith eigenvalue is will annihilate the ith entry no matter where it currently is
in the domain i.e. no matter where the previous descent steps went. This is a nice property of
quadratic functions but it does not generalize to quadratics, we will see this a common theme that
shows up in later algorithms.

2.3.2 Optimal 2-Step Schedules

With the above insight, we can return to the case where we only assume bounds 0 < m < \; < M
on the eigenvalues. For simplicity, we should start by computing an optimal schedule for n = 2
steps. The problem will take a familiar form,

|2 — x|

min max ———-
af faota ||To — x*||

where «, f are our step-sizes.

Suppose R} was the optimal one-step contraction. Our hope would be that the extra flexibility of
step-size would allow /R3 < RJ.

To analyze this, we can folow very similar steps to above. The two-step error recurrence can be

expressed as
xo—x"=(I—-FH)I - aH)(xy—x*)

Note that the contraction term is a matrix polynomial of degree < 2. .

p(H)=(I - BH)(I - aH)
=TI (a+B)H + afH?

In this expression we see that p(0) = I. This is analogous to our plot of y = |1 — a)| above
where the function was pinned (0,1) at. Since p pinned at (0,I) has two degrees of freedom
and is parameterized by two step-size choices a, 3, we have a one-to-one mapping with the set
Py = {p € Py : p(0) = I'}. Squinting at p(H) in factorized form will tell us that «, 8 are the inverse
roots of p. Easiest way to see this is we pass a scalar z and get p(x) = (1 — Sz)(1 — ax). Setting
p(z) = 0 we get solutions = € {a™1, 71}

This lets us write the min of the minimax as

min max Ry = |p(H)|
poly pcPy MIZH=MI

Because H is symmetric, we may digonalize as H = QAQ ' and extract the orthogonal matrices
out of the polynomial to get p(H) = Qp(A)Q". Additionally, matrix-norms are invariant under
orthgonal transforms so ||Qp(A)Q || = ||[p(A)|| meaning that our inner maximization reduces to
the worst-case eigenvalue once again.

i A
;Qg; A (A

7

In fact, if we expand p, this simplified form is an exact generalization of the 1-step picture that we
drew above!

i 1- A+ BN
R B [@O BN

We can plot the polynomial and the maximum value over [m, M| and analyze the worst-case rate.
An interactive plot is available here.

0.5 0.5

0.5 0.5

|
i
:
|
|
|
i
|
l
i
|
i
i
!
i
!

Center too big Right too big Just right

The optimal roots (inverse step-sizes) are shown as the dotted green line at {a‘l, I5} _1} = {

2.3.3 The General Case

The general problem n > 2 steps with step sizes given by {ai}ie[n] can be expressed as

p = i e (il = 05FD) (20 =2

B farow |zo — ||
All of the above steps may be repeated to arrive at the form

i A
i,)]

This problem is closely related the the Chebyshev Polynomials and the solution the n-step problem
will turn out to be exactly the nth Chebyshev Polynomials T}, (modulo some affine transforms on
the input/output). The next section will dive deeper into what the Chebyshev Polynomials, but
for now we will just provide a graph and some rough intuition for why they are the solution.

https://www.desmos.com/calculator/tsclnvkxdz

= Tfr] = Tilx) = Talx) = Tz} — Tiix)

L i i
=11 =13 34 L - | 1

Chebyshev Polynomials T),(z) for degrees n = 1 through n =5 on [—1, 1].

You can see in the above figure that the extrema of the Chebyshev polynomials lie in {—1,1}.
It should be intuitive how this corresponds to the absolute value of the polynomial all sharing a
common maxima.

Take for granted that the solution to the minimax is

o _ Tu(L(N)
P T, 0) W

where L affinely maps the eigenvalue range [m, M] — [—1, 1] which is the natural domain of the
Chebyshev polynomialﬂ

The maximum value that T}, takes on is 1 so maximizing over \ we get

We can understand the limiting optimal rate by taking the large n limit:

We get that

li * _ L

= lim

T () ()
:2<@)”
VE+1
:2(1‘%)

®This works out to be L(A) = == -2 — 1. For A = 0 we get L(0) = -2~

M —

The second line follows from the first definition of the Chebyshev polynomials which shows up in
the following section. For now it suffices to take this as true.

Taking the geometric mean over n steps and dropping constants we see that the final optimal rate

(%)

which is the famous “accelerated” rate for gradient descent.
Similarly we can get an interation complexity R, < e¢isn =0 (\/Elog(l / e))
Philosophical Aside:

Why was the optimal steps for n = 2 suboptimal for n = 1.

It means that we have fewer choices to pick from we have to pick something ”in-between” to trade
off different edge cases ("hedging”).

Young 1953. Acceleration Methods FnTML.

2.4 The Chebyshev Polynomials and Accelerated Methods
Some more resources (Mason & Handscomb, Riulin, Trefethen)
Various Definitions of Chebyshev Polys:

o Explicit:

e Trigonometric:
Tn(z) = cos(n - arccos(z)), z€[—1,1]

{ <2t +1) }
cos T

2n t=0..n—1
2t+1

Wﬂ} +—0. n_1 are angles spread uniformly around the unit circle. So applying cos can
be thought of as projecting the points from the unit circle onto the x-axis.

e Roots:

— Figure [1] is a nice picture for the distribution of roots (uniformly) on a circle then
projected on to the x-axis. it is called the arcsine distribution and will come up in
random step-size schedules

e 3-term recurrence

Thi1(2) =22T0(2) — Tho1(2), To(z) =1,Ti(z) =z

¢ Extremal:

T,(2)/2" ' = argmin max [|p(2)]
p def n,p monic 2€[—1,1]

10

Histogram of Projected x-axis Values with Arcsin Distribution

3.5 1 = Arcsin PDF (ground truth)

3.0

-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100
Projected x value

Figure 1: Distribution of roots of Chebyshev polynomials projected onto the x-axis (arcsine distribution

).

— This is why they showed up in our step-size derivation above.

A core message to takeaway here is that there are many equivalent ways to derive step-size schedules
yielding accelerated descent and they all correspond to some way to define the Chebyshev polyno-
mials. This duality follow directly from the relationship between inverse roots and step-sizes.

2.4.1 Polyak’s Heavy Ball

To begin we can look at the Polyak Heavy Ball Method which introduced the notion of momentum
to first-order optimization. Polyak’s Heavy Ball can be dervied via the 3-term recurrence.

Recall that the 3-term recurrence was

Thi1(2) =22T(2) — Tho1(2)

We need to shift / rescale in order to apply this recurrence to p,+1(H), our optimal contraction
polynomials. We defined L(\) = aX + b to handle scaling the input ﬂ The RHS of the recurrence
can then be expressed in terms of lambda 2(aX + b)T,,(L(N)) — T,—1(L(X)), but we also need to
rescale the out put as in so taking this into accourn the optimal polynomial recurrence is

Pr1(A) = ((c1 + c2A) p(N) — c3pr—1(N))
for some values of ¢q, ¢g, c3

Next, we want to go from this recurrence into something that we can implement. Let’s start with
some wishful thinking: for n 4 1 steps assume we contract according to p,+1(H) which is optimal,
then write the contraction via the recurrence.

Tn+1 — T = pp1(H) (o — ¥)
= ((c1 + c2H) pp(H) — c3pn—1(H)) (x0 — x7)
=(c1 4+ coH)pp(H)(xg — ") —c3 pn—1(H) (o — ™)

— (@ —a*) — (@n-1—a*)

Sfor some values a,b (we will only be concerned with the functional form for now)

11

Where the third line points out that the recurrence allows us to express the optimal n + 1 step
iterate in terms of our n and n — 1 step iterates. Further rearranging gives.

Tp1— T =c1(xy — ")+ o H (k) — ") —c3 (-1 —)
—_———
=Vf(zn)
= 1y + a1 + 2V f(2,) — (54 ¢1) @

The first line identifies the second term as the gradient for the quadratic function. In rearranging
we substitute ¢ = —cg for clarity. If we constraint ¢; + ¢ = 1 we can add z* to both sides to
get

Tyl = C1Ty + yTp—1 + 2V f(xy)
=z, — ¢ (Ty, — Tp_1) +c2V f(Tn)
—_——

momentum

The final step rearranges the update rule in terms of a “momentum” term. Inductively, if we
assumed that x,,x,_1 were the optimal iterates, then by construction it follows that x, 1 is
optimal up to m + 1 step step-size schedule on vanilla gradient descent, thus as we take many
updates n — oo the algorithm achieves the accelerated rate.

If we were to have carried valyes for the constants throughout, we would have arrived at

(2 N (- ymY
“ (\/H+\/M) . (x/MJr\/m)

The relationship between momentum and step-size parameters ¢§ and ¢y is worth its own section.
Fabian Pedregosa’s 2023 ICML Blog (A Hitchhiker’s Guide to Momentum| may be of interest for
further reading and includes derivation of the regions for which (c4,cz) achieve the accelerated
rate.

2.4.2 Random Stepsizes via Potential Theory

Note that the derivation for optimal step-size schedules in [2.3.3] never made an assmption on
the ordering of step-sizes. Informally, as number n steps we are optimizing grows large, taking a
random ordering of these step-sizes can be approximated by sampling iid from some distribution
- that is something like p,, = %Zt 0(ay) for large n. The figure [1| would suggest that the limiting
distribution u, — w is the arcsine distribution.

Alternatively, we can give theoretical justification for p by showing that it is the optimal distribu-
tion. To begin, will express our problem using the matrix norm.

Rn(w) = mix HH (I— at(w)A)H

— max HH - at(w)/\|H

AE[m,M]

12

https://iclr-blogposts.github.io/2023/blog/2023/hitchhikers-momentum/

Where a;(w) are function of the random draw from p, and the second line diagonalizes. The
optimization problem we will be interested in for the random case is

min h—>Holo Eqyopm ['\‘/}Tn]

nwon

We want to study how the geometric mean converges. To do this, we can analyze the log one-step
contraction rate. In general, if X; are distributed i.i.d and G,, := (]] Xi)l/ " is the geometric mean,
then Elog X; = m implies that G,, — ™ almost surelym Thus it suffices to study the problem
minimizing

log R(u) = max E (log ‘1 - =

A
AE[m,M] o

since it will also minimize the geometric average of the rates. To solve the problem cleanly we
can make a connection to electrostatic potential theory. To begin, we write the two problems as
follow:

e Step-size Problem: copy paste from aboves but we use f = a~! to minimize over the inverse-
step-size distribution v since it allows us to make a cleaner connection to potentual theory.

min max FEg.-log|l — —
Y AE[m,M] By g‘ ﬁ‘

e Electrostatics Problem: Meinimization of potentials on a line where the log1/|8 — «| kernel
defines the energy between particles

1
min E, g, log ——
AePiman) P8 1B]

Fundamental Theorem of Potential Theory: Characterized uniquely by an equalizing prop-

erty
1
A — Elog <)
16— al

In other words, suppose we sample from the continuum of points leading to the same log potential
no matter where you are on the graph. One way to think about this intuitively is that this is
a “stationary” potential since (if we allow particles to move around) there is no place where the
potential is higher / lower than where it is in the distribution.

Jason provided some intuitive argument for the actual conclusion that arcsine is the optimal v but
it was more complex

Connection to perfect hedging:

"See further discussion at this Math Stack Exchange post.

13

https://math.stackexchange.com/questions/1108732/geometric-mean-with-the-law-of-large-numbers

In the limit of Chebyshev step sizes what ends up happening is that we are “equally” hedged against
everything. This means that CHEBYSHEV BASED METHODS NEVER DO BETTER

than
Vi -1
VE+1
There is some connection to Green’s function that I should learn about: fundamentally, the step

size optimum is given by the negative green’s function evaluated on [m, M]° or something like this
on the complex plane.

2.5 Understanding the best case scenarios via a two player game
e Min plays a step-size distribution
e Max plays a quadratic function

Game
Rate = inf sup Eg.,log ‘1 — ﬁ_l)\‘
T Ag[m,M]
To make the game more symmetric we can lift the function player into distribution over As giv-
ing

inf sup Eg.yx,log|l — B
VEP(E) peP(E) e ’ ‘

3 Nesterov’s Accelertion and Curvature

This section is based on work from Su, Boyd and Candes (2015) and (2018).

14

https://arxiv.org/pdf/1503.01243
https://arxiv.org/pdf/1810.08907

Vanilla Gradient Descent Polyak's Heavy Ball Nesterov's Accelerated Gradient 005121

004552
003983
003414 ,,

002

—n9fa) 002276 §
o~ PHB Path (first 3 steps) 2
Y Path o107
) (Gradient step)
—+~ GD Path (first 3 steps) (PHB Step) oou13s
%= Global Minimum Minimum

000569

000000

Nesterov's Accelerated Gradient

Polyak's Heavy Ball

Vanilla Gradient Descent

005121

004552

003983

003414 g

002

002276 §
01707
000y oo1138
000569

= 000000
~0.100
20.100-0.075 ~0.050 ~0.025 0000 0.025 0.050 0075 0100
X

007
007 — Polyak HB Path (10 steps

-5 Global Minimur

00 -0.075 ~0.050 0,025 0.000 0.025 0.050 0075 0.100
X

0100 ~0.100
=0.100-0.075-0.050 0,025 0.000 0.025 0050 0075 0.100 o
X

Figure 2: Top row: Illustration of Nesterov’s accelerated gradient descent steps on the quadratic
function f(x) = 10z + x3. Bottom row: Comparison between 10 steps of vanilla gradient descent,
Nesterov acceleration, and Polyak heavy ball methods on the same function

Acceleration over the class of L-smooth convex functions has proven to be a more challenging
problem. In 1983, Yurii Nesterov proposed a simple modification to the gradient descent rule
yielding the O(l\/T) rate to match the quadratic setting. Termed, Nesterov acceleration, the
update can be written as:

Yr = xf + Br(Tr — Tp—1)
i1 =Yk — NV f(yr)

where (5 is a momentum parameter (which can be tuned or scheduled) and L is the smoothness

parameter of f.

Visually, this update first extrapolates @y in the direction of its last iteration (xx —xx_1) to get y,
and then performs a gradient step from the extrapolated point y,. We can visualize the updates
on quadratic f(z) = 10z? + 22 in Figure

The proof for NAG is complicated, so we are going to leave it out for now, but there is useful
intuition in comparing the algorithm to Polyak’s heavy ball. The updates are almost identical
except in Nesterov’s the gradient is computed at the point y; as opposed to xy.

Polyak’s Update xjy1 =yr —nV f(xy)
Nesterov’s Update xp11 = yr — 0V f(yx)

As in previous algorithms the challenge of adapting quadratic methods to general convex functions
is that curvature may vary from one point to another. Intuitively, we might hope that V f(yx)
provides more of curvature information than V f(xy).

15

We can start to see this by writing V f(yx) as a taylor approximation around V f(y).

Vi(ye) = Vf(@) + V2 () (yr — o)
=V f(zk) + V> f(zr) Br(zp — 1)

For the quadratic case, this approximation is exact.

16

	Setting the Stage
	Optimization and Gradient Descent
	Why -f?

	Quadratics
	Do we converge?
	How fast do we converge?
	Optimal Schedules
	Warmup: Spectral Annihilation
	Optimal 2-Step Schedules
	The General Case

	The Chebyshev Polynomials and Accelerated Methods
	Polyak's Heavy Ball
	Random Stepsizes via Potential Theory

	Understanding the best case scenarios via a two player game

	Nesterov's Accelertion and Curvature

