
STAT 9912: Acceleration, Greed and Hedging in Optimization

Taught by Dr. Jason Altschuler
Notes written by Faraz Radhman

Contents

1 Setting the Stage 2
1.1 Optimization and Gradient Descent . 2
1.2 Why −∇f? . 2

2 Quadratics 3
2.1 Do we converge? . 3
2.2 How fast do we converge? . 4
2.3 Optimal Schedules . 5

2.3.1 Warmup: Spectral Annihilation . 6
2.3.2 Optimal 2-Step Schedules . 7
2.3.3 The General Case . 8

2.4 The Chebyshev Polynomials and Accelerated Methods 10
2.4.1 Polyak’s Heavy Ball . 11
2.4.2 Random Stepsizes via Potential Theory . 12

2.5 Understanding the best case scenarios via a two player game 14

3 Nesterov’s Accelertion and Curvature 14

1

1 Setting the Stage

1.1 Optimization and Gradient Descent

Mathematical optimization tackles the set of problems that can be formulated as

minimize
x

f(x)

subject to x ∈ X

This course aims to study progress in first order optimizers: algorithms that aim to solve the above
problem given an oracle that can compute the following given x

1. f(x)

2. ∇f(x)

The canonical algorithm to solve this problem is Gradient Descent (GD) and is described by the
following update

xt+1 = xt − αt∇f(xt)

where {αt} parameterizes different ”schedules” for GD.

Here are some questions to start discussion:

Q1) Why move in the direction −∇f

Q2) Can GD converge? (with any step sizes)

Q3) How fast? (with optimal step sizes)

1.2 Why −∇f?

The gradient descent algorithm, as many other tools in science and engineering, can be derived
from solving a linear approximation to the optimization objective.

Writing the first-order Taylor-expansion at x we get

f(x+ v) ≈ f(x) + ⟨∇f(x),v⟩

If we want to use this crude optimization to (try to) move x in a direction that reduces f , we can
setup the following problem.

minimize
v

f(x) + ⟨∇f(x),v⟩

subject to ∥v∥22 ≤ 1

In English, this asks: “If we were only allowed to move one unit away from x what direction should
we move to decrease f(x) the most?”.

We will find that
v∗ ∝ −∇f(x)

2

A comment should be made that the choice of the ℓ2 norm here is not obvious. Different norms
will induce different update rules creating a general class of algorithms called methods of steepest
descent.

2 Quadratics

The simplest place to start our study is in the optimization of convex quadratic functions.

We can consider any function that can be expressed as

f(x) =
1

2
x⊤Hx− b⊤x+ c

where H ⪰ 01 (necessary for f to be convex) and H is symmetric.2

One assumption we will make is that mI ⪯ H ⪯ MI where m,M > 0 making the f M -smooth
and m-strongly convex.

This problem has a closed-form optimal solution given by

x∗ = H−1b

which can be derived via the FOC. This equality will be useful for deriving convergence rates for
GD on quadratics.

2.1 Do we converge?

Much can be said about GD by studying the difference to between the current solution and the
optimal solution

xt − x∗

over time. Intuitively we want the distance to go down... and fast!

Plugging in the update rule we can see how

(xt+1 − x∗) = (xt − x∗)− αt∇f(x)

Note that

∇f(x) = Hxt − b

= Hxt −HH−1b

= Hxt −Hx∗

= H (xt − x∗)

where the third lines comes from the closed form solution x∗ = H−1b.

1H ⪰ 0 ⇔ x⊤Hx ≥ 0, ∀x ∈ Rm ⇔ H is positive semidefinite (PSD) by defn. ⇔ x⊤Hx is convex.
2We can assume H is symmetric without loss of generality because if H is not symmetric, we can replace it with

Ĥ = 1
2

(
H +H⊤), which yields an equivalent function f̂

3

If we plug in this term for ∇f(x) we get a recurrence

(xt+1 − x∗) = (xt − x∗)− αtH(bxt − x∗)

= (I − αtH)(xt − x∗)

This is a Linear Dynamical System (LDS). Recall that an LDS

zt+1 = Azt

will converge so long as |λi| < 1 for all eigenvalues λi of A.

Recall that we assumed that mI ⪯ H ⪯ MI, so our dynamics matrix At = (I − αtH) we know
that the eigenvalues for this dynamical system sit in

λi ∈ [1− αM, 1− αm]

Hence, if set all steps to an adequately chosen αt = α the above LDS will converge to 0.

2.2 How fast do we converge?

Before we can answer this question we need to define what it means to converge “quickly”. Consider
the metric

RT =
∥xT − x∗∥
∥x0 − x∗∥

which captures the fraction of the original distance remaining in our optimization. Naturally we
want this as low as possibile. Taking the geometric mean (RT)

1/T can tell us about the average
contraction rate of our error per optimization step.

In our analysis we will focus on worst-case analysis over the functions f , and random inits x0, so
if αt = α is constant, then it suffices to consider R1. We will start here

Consider the following minimax problem where we look for the algorithm (parameetrized by con-
stant step-size α) that minimizes the the worst case 1-step contraction rate R1

argmin
α

max
f,x0

R1 :=
∥x1 − x∗∥
∥x0 − x∗∥

Using the LDS update to expand the numerator,

argmin
α

max
H,x0

∥(I − αH) (x0 − x∗)∥
∥x0 − x∗∥

Some may recognize the inner maximization as the matrix norm of (I−αH). Since H is symmetric
this is equivalent to the maximum eigenvalue.3 So we can express the minimax as

argmin
α

max
H

λmax (I − αH)

3More information on the matrix norm can be found here.

4

https://math.stackexchange.com/questions/4159983/derivation-of-l2-norm-of-matrix-formula

Since we assumed mI ⪯ H ⪯ MI what we can further simplify to

argmin
α

max
m≤λ≤M

|1− αλ|

There is a nice geometric interpretation to this problem. If we think |1− αλ| as a linear function,
we can think of sweeping the slope of an absolute function pinned at (0, 1).

You can play around with this exact plot on Desmos here.

Analytically, since the function is a (peice-wise) linear, we know that the maximum is at either
boundary allowing us to write

argmin
α

max {|1− αm|, |1− αM |}

With arithmetic we can arrive at

α∗ =
2

M +m

If we plug this into R1 we get a Convergence Rate:

R1 =
M −m

M +m
= 1−O

(
1

k

)
If we want Iteration Complexity (a.k.a. running time): Recall:

errorn ≤ Rn
1 · error0

Suppose we want to ask how many iterations need to get errorn = ϵ

i.e.

Rn
1 ≤ ϵ ⇒ n = k log

(
1

ϵ

)
Note the fact: 1− δ =

2.3 Optimal Schedules

In the above section, we derived optimal rates for GD when we can pick a single fixed step-size.
The natural follow-up is to ask if we can do better with non-constant step-sizes.

5

https://www.desmos.com/calculator/ehnoyh1yen

2.3.1 Warmup: Spectral Annihilation4

We spent some time deriving the optimal constant step-size for worst-case qudaratic problems with
a given mininum and maximum eigenvalue. Before continuing, let’s build understanding about
what we can do if we have access to the entire eigen-spectrum of our problem.

In particular, let’s start with the 1d-case with

f(x) =
1

2
Ax2

The gradient ∇f(x) = Ax, so after one step of gradient descent with step-size α, the next iterate
is

x+ = x− αAx

You’ll notice that simply setting α = 1
A yields

x+ = x− A

A
x = 0 = x∗

Allowing us to solve in one iteration. Now consider that we have a 2d problem.

Consider diagonal A ∈ R2×2 and

f(x) =
1

2
x⊤Ax =

1

2

(
A11x

2
1 +A22x

2
2

)
The gradient ∇f(x) = Ax, so after one step of gradient descent with step-size α, the next iterate
is

x+1 = x− αA11x

x+2 = x− αA22x

Like the 1d case, we can simply select the diagonal elements (eigen-values for general matrices) to
be our reciprocal step-sizes to arrive knock the corresponding entry right to the optimum x∗ = 0.
Let α1 =

1
A11

, α2 =
1

A22
, then after one step we knock out x1

x++
1 = x+1 − A11

A11
x1 = 0

x++
2 = x+2 − A22

A11
x2 =

(
1− A22

A11

)
x2

And after the second step we get knock x2.

x+1 = x1 −
1

A22
· 0 = 0

x+2 = x+2 − A22

A22
x+2 = 0

4Not included in original lectures.

6

This logic extends to d-dimensional problems and non-diagonal problems where we arrive at the
optimum in d-steps. An important takeaway here is that the order of step-sizes do not matter.
Because, the eigen-spectrum of a quadratic function is indentical at all points, the step with step-
size reciprocal to the ith eigenvalue is will annihilate the ith entry no matter where it currently is
in the domain i.e. no matter where the previous descent steps went. This is a nice property of
quadratic functions but it does not generalize to quadratics, we will see this a common theme that
shows up in later algorithms.

2.3.2 Optimal 2-Step Schedules

With the above insight, we can return to the case where we only assume bounds 0 < m ≤ λi ≤ M
on the eigenvalues. For simplicity, we should start by computing an optimal schedule for n = 2
steps. The problem will take a familiar form,

min
α,β

max
f,x0 ̸=x∗

∥x2 − x∗∥
∥x0 − x∗∥

where α, β are our step-sizes.

Suppose R∗
1 was the optimal one-step contraction. Our hope would be that the extra flexibility of

step-size would allow
√
R∗

2 < R∗
1.

To analyze this, we can folow very similar steps to above. The two-step error recurrence can be
expressed as

x2 − x∗ = (I − βH)(I − αH)(x0 − x∗)

Note that the contraction term is a matrix polynomial of degree ≤ 2. .

p(H) = (I − βH)(I − αH)

= I − (α+ β)H + αβH2

In this expression we see that p(0) = I. This is analogous to our plot of y = |1 − αλ| above
where the function was pinned (0, 1) at. Since p pinned at (0, I) has two degrees of freedom
and is parameterized by two step-size choices α, β, we have a one-to-one mapping with the set
P̂2 = {p ∈ P2 : p(0) = I}. Squinting at p(H) in factorized form will tell us that α, β are the inverse
roots of p. Easiest way to see this is we pass a scalar x and get p(x) = (1 − βx)(1 − αx). Setting
p(x) = 0 we get solutions x ∈ {α−1, β−1}.

This lets us write the min of the minimax as

min
poly p∈P̂2

max
mI⪯H⪯MI

R2 = ∥p(H)∥

Because H is symmetric, we may digonalize as H = QΛQ⊤ and extract the orthogonal matrices
out of the polynomial to get p(H) = Qp(Λ)Q⊤. Additionally, matrix-norms are invariant under
orthgonal transforms so ||Qp(Λ)Q⊤|| = ||p(Λ)|| meaning that our inner maximization reduces to
the worst-case eigenvalue once again.

min
p∈P̂2

max
m≤λ≤M

|p(λ)|

7

In fact, if we expand p, this simplified form is an exact generalization of the 1-step picture that we
drew above!

min
α,β

max
m≤λ≤M

∣∣1− (α+ β)λ+ αβλ2
∣∣

We can plot the polynomial and the maximum value over [m,M] and analyze the worst-case rate.
An interactive plot is available here.

Center too big Right too big Just right

The optimal roots (inverse step-sizes) are shown as the dotted green line at
{
α−1, β−1

}
=
{

M+m
2 ± M−m

2
√
2

}
2.3.3 The General Case

The general problem n ≥ 2 steps with step sizes given by {αi}i∈[n] can be expressed as

R∗
n = min

α,β
max

f,x0 ̸=x∗

∥∥∥(∏i∈[n](I − αiH)
)
(x0 − x∗)

∥∥∥
∥x0 − x∗∥

All of the above steps may be repeated to arrive at the form

min
p∈P̂n

max
m≤λ≤M

|p(λ)|

This problem is closely related the the Chebyshev Polynomials and the solution the n-step problem
will turn out to be exactly the nth Chebyshev Polynomials Tn (modulo some affine transforms on
the input/output). The next section will dive deeper into what the Chebyshev Polynomials, but
for now we will just provide a graph and some rough intuition for why they are the solution.

8

https://www.desmos.com/calculator/tsclnvkxdz

Chebyshev Polynomials Tn(x) for degrees n = 1 through n = 5 on [−1, 1].

You can see in the above figure that the extrema of the Chebyshev polynomials lie in {−1, 1}.
It should be intuitive how this corresponds to the absolute value of the polynomial all sharing a
common maxima.

Take for granted that the solution to the minimax is

p∗n =
Tn(L(λ))

Tn(L(0))
(1)

where L affinely maps the eigenvalue range [m,M] → [−1, 1] which is the natural domain of the
Chebyshev polynomial.5

The maximum value that Tn takes on is 1 so maximizing over λ we get

R∗
n =

1

Tn(L(0))

We can understand the limiting optimal rate by taking the large n limit:

We get that

lim
n→∞

R∗
n = lim

n→∞

1

Tn(L(0))

= lim
n→∞

2(√
κ−1√
κ+1

)n
+
(√

κ−1√
κ+1

)−n

= 2

(√
κ− 1√
κ+ 1

)n

= 2

(
1− 2√

κ+ 1

)n

5This works out to be L(λ) = λ−m
M−m

· 2− 1. For λ = 0 we get L(0) = −2m
M−m

− 1 = −M−m
M−m

= m+M
m−M

= 1+κ
1−κ

9

The second line follows from the first definition of the Chebyshev polynomials which shows up in
the following section. For now it suffices to take this as true.

Taking the geometric mean over n steps and dropping constants we see that the final optimal rate
is

O
(

1√
κ

)
which is the famous “accelerated” rate for gradient descent.

Similarly we can get an interation complexity Rn ≤ ϵ is n = Θ
(√

k log(1/ϵ)
)

Philosophical Aside:

Why was the optimal steps for n = 2 suboptimal for n = 1.

It means that we have fewer choices to pick from we have to pick something ”in-between” to trade
off different edge cases (”hedging”).

Young 1953. Acceleration Methods FnTML.

2.4 The Chebyshev Polynomials and Accelerated Methods

Some more resources (Mason & Handscomb, Riulin, Trefethen)

Various Definitions of Chebyshev Polys:

• Explicit:

Tn(z) =

(
z −

√
z2 − 1

)n
+
(
z +

√
z2 − 1

)n
2

• Trigonometric:
Tn(z) = cos(n · arccos(z)), z ∈ [−1, 1]

• Roots: {
cos

(
2t+ 1

2n
π

)}
t=0...n−1

–
{
2t+1
2n π

}
t=0...n−1

are angles spread uniformly around the unit circle. So applying cos can
be thought of as projecting the points from the unit circle onto the x-axis.

– Figure 1 is a nice picture for the distribution of roots (uniformly) on a circle then
projected on to the x-axis. it is called the arcsine distribution and will come up in
random step-size schedules

• 3-term recurrence

Tn+1(z) = 2zTn(z)− Tn−1(z), T0(z) = 1, T1(z) = z

• Extremal:
Tn(z)/2

n−1 = argmin
p def n,p monic

max
z∈[−1,1]

|p(z)|

10

Figure 1: Distribution of roots of Chebyshev polynomials projected onto the x-axis (arcsine distribution
).

– This is why they showed up in our step-size derivation above.

A core message to takeaway here is that there are many equivalent ways to derive step-size schedules
yielding accelerated descent and they all correspond to some way to define the Chebyshev polyno-
mials. This duality follow directly from the relationship between inverse roots and step-sizes.

2.4.1 Polyak’s Heavy Ball

To begin we can look at the Polyak Heavy Ball Method which introduced the notion of momentum
to first-order optimization. Polyak’s Heavy Ball can be dervied via the 3-term recurrence.

Recall that the 3-term recurrence was

Tn+1(z) = 2zTn(z)− Tn−1(z)

We need to shift / rescale in order to apply this recurrence to pn+1(H), our optimal contraction
polynomials. We defined L(λ) = aλ+ b to handle scaling the input 6. The RHS of the recurrence
can then be expressed in terms of lambda 2(aλ + b)Tn(L(λ)) − Tn−1(L(λ)), but we also need to
rescale the out put as in (1) so taking this into accourn the optimal polynomial recurrence is

pn+1(λ) = ((c1 + c2λ) pn(λ)− c3pn−1(λ))

for some values of c1, c2, c3

Next, we want to go from this recurrence into something that we can implement. Let’s start with
some wishful thinking: for n+1 steps assume we contract according to pn+1(H) which is optimal,
then write the contraction via the recurrence.

xn+1 − x∗ = pn+1(H)(x0 − x∗)

= ((c1 + c2H) pn(H)− c3pn−1(H)) (x0 − x∗)

= (c1 + c2H) pn(H)(x0 − x∗)︸ ︷︷ ︸
=(xn−x∗)

−c3 pn−1(H)(x0 − x∗)︸ ︷︷ ︸
=(xn−1−x∗)

6for some values a, b (we will only be concerned with the functional form for now)

11

Where the third line points out that the recurrence allows us to express the optimal n + 1 step
iterate in terms of our n and n− 1 step iterates. Further rearranging gives.

xn+1 − x∗ = c1 (xn − x∗) + c2H (xn − x∗)︸ ︷︷ ︸
=∇f(xn)

−c3 (xn−1 − x∗)

= c1xn + c′3xn−1 + c2∇f(xn)−
(
c′3 + c1

)
x∗

The first line identifies the second term as the gradient for the quadratic function. In rearranging
we substitute c′3 = −c3 for clarity. If we constraint c1 + c′3 = 1 we can add x∗ to both sides to
get

xn+1 = c1xn + c′3xn−1 + c2∇f(xn)

= xn − c′3 (xn − xn−1)︸ ︷︷ ︸
momentum

+c2∇f(xn)

The final step rearranges the update rule in terms of a “momentum” term. Inductively, if we
assumed that xn,xn−1 were the optimal iterates, then by construction it follows that xn+1 is
optimal up to n + 1 step step-size schedule on vanilla gradient descent, thus as we take many
updates n → ∞ the algorithm achieves the accelerated rate.

If we were to have carried valyes for the constants throughout, we would have arrived at

c′3 =

(
2√

M +
√
m

)2

, c2 =

(√
M −

√
m√

M +
√
m

)2

The relationship between momentum and step-size parameters c′3 and c2 is worth its own section.
Fabian Pedregosa’s 2023 ICML Blog A Hitchhiker’s Guide to Momentum may be of interest for
further reading and includes derivation of the regions for which (c′3, c2) achieve the accelerated
rate.

2.4.2 Random Stepsizes via Potential Theory

Note that the derivation for optimal step-size schedules in 2.3.3 never made an assmption on
the ordering of step-sizes. Informally, as number n steps we are optimizing grows large, taking a
random ordering of these step-sizes can be approximated by sampling iid from some distribution
- that is something like µn = 1

n

∑
t δ(αt) for large n. The figure 1 would suggest that the limiting

distribution µn → µ is the arcsine distribution.

Alternatively, we can give theoretical justification for µ by showing that it is the optimal distribu-
tion. To begin, will express our problem using the matrix norm.

Rn(ω) = max
f

∥∥∥∏ (I − αt(ω)Λ)
∥∥∥

= max
λ∈[m,M]

∥∥∥∏ |1− αt(ω)λ|
∥∥∥

12

https://iclr-blogposts.github.io/2023/blog/2023/hitchhikers-momentum/

Where αt(ω) are function of the random draw from µ, and the second line diagonalizes. The
optimization problem we will be interested in for the random case is

min
µ

lim
n→∞

E{αt}∼µn

[
n
√
Rn

]
We want to study how the geometric mean converges. To do this, we can analyze the log one-step
contraction rate. In general, if Xi are distributed i.i.d and Gn := (

∏
Xi)

1/n is the geometric mean,
then E logXi = m implies that Gn → em almost surely.7 Thus it suffices to study the problem
minimizing

logR(u) = max
λ∈[m,M]

E

(
log

∣∣∣∣1− λ

α

∣∣∣∣)
since it will also minimize the geometric average of the rates. To solve the problem cleanly we
can make a connection to electrostatic potential theory. To begin, we write the two problems as
follow:

• Step-size Problem: copy paste from aboves but we use β = α−1 to minimize over the inverse-
step-size distribution γ since it allows us to make a cleaner connection to potentual theory.

min
γ

max
λ∈[m,M]

Eβ∼γ log

∣∣∣∣1− λ

β

∣∣∣∣
• Electrostatics Problem: Meinimization of potentials on a line where the log 1/|β − α| kernel
defines the energy between particles

min
γ∈P(m,M)

Eα,β∼γ log
1

|β − α|

Fundamental Theorem of Potential Theory: Characterized uniquely by an equalizing prop-
erty

λ 7→ E log

(
1

|β − α|

)
In other words, suppose we sample from the continuum of points leading to the same log potential
no matter where you are on the graph. One way to think about this intuitively is that this is
a “stationary” potential since (if we allow particles to move around) there is no place where the
potential is higher / lower than where it is in the distribution.

Jason provided some intuitive argument for the actual conclusion that arcsine is the optimal γ but
it was more complex

Connection to perfect hedging:

7See further discussion at this Math Stack Exchange post.

13

https://math.stackexchange.com/questions/1108732/geometric-mean-with-the-law-of-large-numbers

In the limit of Chebyshev step sizes what ends up happening is that we are “equally” hedged against
everything. This means that CHEBYSHEV BASED METHODS NEVER DO BETTER
than √

k − 1√
k + 1

There is some connection to Green’s function that I should learn about: fundamentally, the step
size optimum is given by the negative green’s function evaluated on [m,M]c or something like this
on the complex plane.

2.5 Understanding the best case scenarios via a two player game

• Min plays a step-size distribution

• Max plays a quadratic function

Game
Rate = inf

γ
sup

λ∈[m,M]
Eβ∼γ log

∣∣1− β−1λ
∣∣

To make the game more symmetric we can lift the function player into distribution over λs giv-
ing

inf
γ∈P(E)

sup
ρ∈P(E)

Eβ∼γ,λ∼ρ log
∣∣1− β−1λ

∣∣
3 Nesterov’s Accelertion and Curvature

This section is based on work from Su, Boyd and Candes (2015) and Shi et al. (2018).

14

https://arxiv.org/pdf/1503.01243
https://arxiv.org/pdf/1810.08907

Figure 2: Top row: Illustration of Nesterov’s accelerated gradient descent steps on the quadratic
function f(x) = 10x2

1 + x2
2. Bottom row: Comparison between 10 steps of vanilla gradient descent,

Nesterov acceleration, and Polyak heavy ball methods on the same function

Acceleration over the class of L-smooth convex functions has proven to be a more challenging
problem. In 1983, Yurii Nesterov proposed a simple modification to the gradient descent rule
yielding the O(1

√
T) rate to match the quadratic setting. Termed, Nesterov acceleration, the

update can be written as:

yk = xk + βk(xk − xk−1)

xk+1 = yk − η∇f(yk)

where βk is a momentum parameter (which can be tuned or scheduled) and L is the smoothness
parameter of f .

Visually, this update first extrapolates xk in the direction of its last iteration (xk−xk−1) to get yk,
and then performs a gradient step from the extrapolated point yk. We can visualize the updates
on quadratic f(x) = 10x21 + x22 in Figure 2

The proof for NAG is complicated, so we are going to leave it out for now, but there is useful
intuition in comparing the algorithm to Polyak’s heavy ball. The updates are almost identical
except in Nesterov’s the gradient is computed at the point yk as opposed to xk.

Polyak’s Update xk+1 = yk − η∇f(xk)

Nesterov’s Update xk+1 = yk − η∇f(yk)

As in previous algorithms the challenge of adapting quadratic methods to general convex functions
is that curvature may vary from one point to another. Intuitively, we might hope that ∇f(yk)
provides more of curvature information than ∇f(xk).

15

We can start to see this by writing ∇f(yk) as a taylor approximation around ∇f(yk).

∇f(yk) ≈ ∇f(xk) +∇2f(xk)(yk − xk)

= ∇f(xk) +∇2f(xk)βk(xk − xk−1)

For the quadratic case, this approximation is exact.

16

	Setting the Stage
	Optimization and Gradient Descent
	Why -f?

	Quadratics
	Do we converge?
	How fast do we converge?
	Optimal Schedules
	Warmup: Spectral Annihilation
	Optimal 2-Step Schedules
	The General Case

	The Chebyshev Polynomials and Accelerated Methods
	Polyak's Heavy Ball
	Random Stepsizes via Potential Theory

	Understanding the best case scenarios via a two player game

	Nesterov's Accelertion and Curvature

